

Published on Web 08/18/2010

Highly Selective Carbon Dioxide Sorption in an Organic Molecular Porous Material

Hyunuk Kim,[†] Yonghwi Kim,[†] Minyoung Yoon,[†] Soyoung Lim,[†] Se Min Park,[‡] Gon Seo,[‡] and Kimoon Kim*,†

National Creative Research Initiative Center for Smart Supramolecules, Department of Chemistry, and Division of Advanced Materials Science, Pohang University of Science and Technology, San 31 Hyojadong, Pohang 790-784, Republic of Korea, and School of Applied Chemical Engineering and The Research Institute for Catalysis, Chonnam National University, 300, Yongbong-dong, Gwangju 500-757, Republic of Korea

Received June 14, 2010; E-mail: kkim@postech.ac.kr

Abstract: The organic molecular porous material 1 obtained by recrystallization of cucurbit[6]uril (CB[6]) from HCI shows a high CO2 sorption capacity at 298 K, 1 bar. Most interestingly, 1 showed the highest selectivity of CO2 over CO among the known porous materials so far. The remarkable selectivity of CO₂ may be attributed to the exceptionally high enthalpy of adsorption (33.0 kJ/mol). X-ray crystal structure analysis of CO₂ adsorbed 1 revealed three independent CO₂ sorption sites: two in the 1D channels (A and B) and one in the molecular cavities (C). The CO₂ molecules adsorbed at sorption site A near the wall of the 1D channels interact with 1 through hydrogen bonding and at the same time interact with those at site B mainly through quadrupole-quadrupole interaction in a T-shaped arrangement. Interestingly, two CO2 molecules are included in the CB[6] cavity (site C), interacting not only with the carbonyl groups of CB[6] but also with each other in a slipped-parallel geometry. The exceptionally selective CO₂ sorption properties of 1 may find useful applications in the pressure swing adsorption (PSA) process for CO₂ separation not only in the steel industry but also in other industries such as natural gas mining.

The removal of CO₂ generated by power plants and steel mills has drawn a great amount of attention because 40-50% of total CO₂ emission causing global warming is coming out of such stationary sources.¹ Especially, in the process of steelmaking, a large amount of CO2 is generated, as CO gas is used as a reducing agent and converted into CO2 gas. Capturing CO2 selectively in flue gases and recycling unreacted CO is thus an important issue in the steel industry.² Various amine solutions have been commonly used to capture CO₂ selectively from the flue gases through a chemical reaction between the amines and CO₂ molecules.³ In addition to the toxicity and corrosion problems, however, this process requires substantial energy to recover the amines for recycling, leading to low energy efficiency and high cost.⁴

The search for new materials for selective separation of CO₂ from flue gases is thus critically important. Recently, metal-organic frameworks (MOFs), emerging absorbents made of metal ions and organic building blocks, with an exceptionally high surface area and easily modifiable functional groups showed a remarkable CO₂ sorption capacity and selectivity.⁵ However, no MOF has met stringent industrial requirements, as they are generally too expensive, sensitive to moisture, etc. Organic molecular porous materials assembled from cheap, robust, and readily available organic molecules may be good candidates for such adsorbents, but only a few organic molecular

porous materials have been investigated for this purpose.⁶ Herein we report the highly selective sorption of CO₂ over CO and CH₄ in an organic molecular porous material (1) based on cucurbit[6]uril (CB[6]) with high thermal and chemical stability and permanent porosity. Single-crystal X-ray structure of CO₂ adsorbed 1 revealed three CO₂ sorption sites located in 1D channels and molecular cavities.

Cucurbit[6]uril is a hollowed-out pumpkin-shaped macrocycle with a hydrophobic cavity accessible through two identical carbonyl-fringed portals.⁷ The molecule with high thermal and chemical stability is readily synthesized in high yield from cheap starting materials, glycoluril and formaldehyde. The organic molecular porous material (1) obtained by recrystallization of CB[6] from HCl showed a honeycomb-like structure with 1D channels along the c axis (Figure S1).⁸ The interesting structure, high thermal and chemical stability,⁹ and gas sorption properties of 1 prompted us to tackle the challenging issue of selective CO₂ separation and storage.

Gas (CO₂, CH₄, and CO) sorption isotherms for 1 were measured up to 1 bar at 273 and 298 K (Figures 1 and S4). Interestingly, 1 showed an unusually high CO₂ sorption capacity with little hysteresis (45 cm³/g, 2.2 mmol/g at 298 K, 1 bar), which is much higher than those of any known organic molecular porous materials.^{6,10} In particular, CO_2 uptake (32 mg/g) of **1** at 0.1 bar, a typical partial pressure of CO₂ in flue gases from power plants and steel mills, is comparable or even superior to that of many MOFs (Table S1).5e,f The maximum sorption capacity for CO_2 at 1 bar, 196 K is 97 cm³/g (4.4 mmol/g), which corresponds to 4.5 CO₂ molecules per CB[6]. Unlike CO₂, however, CO gas was minimally absorbed in 1 up to 1 bar at 298 K. It should be noted that the selectivity of CO₂ over CO estimated by Henry's constants at 298 K is 46.4, which is the highest

Figure 1. CO₂ (red circles), CH₄ (blue squares), and CO (black triangles) sorption isotherms for 1 at 298 K (filled symbols: adsorption; open symbols: desorption).

[†] Pohang University of Science and Technology. [‡] Chonnam National University.

value among those of known porous materials so far (see Supporting Information (SI) for details).^{5a,b} Moreover, 1 also showed remarkable CO_2 selectivity (14.8) over CH_4 , which suggests that it may be useful in the removal of CO_2 from natural gas.^{5b,c}

Figure 2. In situ FT-IR spectra of (a) **1** after activation at 150 $^{\circ}$ C, (b) CO₂ loaded **1** at 30 Torr, and (c) CO loaded **1** at 30 Torr.

To confirm the selective sorption of CO₂, we then carried out an *in situ* FT-IR spectroscopic study. The IR spectrum of **1** taken after exposure to CO₂ gas at 30 Torr followed by removal of free CO₂ gas under vacuum at 50 °C showed a characteristic CO₂ peak at 2336 cm⁻¹ confirming the strong sorption of CO₂. On the other hand, when the same experiment was repeated with CO, no CO peak was observed, indicating no sorption of CO gas (Figure 2). In addition, the temperature-dependent FT-IR spectra (Figure S9) of CO₂ adsorbed **1** showed that strongly adsorbed CO₂ molecules were slowly removed as the temperature increased from 50 to 100 °C.

The enthalpy of CO₂ adsorption for **1** was estimated from the sorption isotherms at 273 and 298 K using the virial equation to understand the strong affinity of **1** toward CO₂. At zero coverage, the enthalpy of CO₂ adsorption is 33.0 kJ/mol, which is comparable to those of MOFs with organic ammonium ions in the pores for strong CO₂ binding (Figure S10).^{5g} The exceptionally high enthalpy of CO₂ adsorption in the organic molecular porous material led us to study the CO₂ sorption sites in **1**.

Figure 3. (a) X-ray crystal structure of CO_2 adsorbed 1, (b) sorption site A, (c) sorption site B, and (d) sorption site C.

To investigate the CO_2 sorption sites in **1**, the structure of CO_2 adsorbed **1** was determined by single-crystal X-ray crystallography. A single-crystal of **1** was sealed in a thick walled glass capillary

COMMUNICATIONS

under a CO₂ atmosphere (see SI for details), and X-ray diffraction data were collected at 90 K with synchrotron radiation.¹¹ X-ray crystal structure analysis of CO₂ adsorbed **1** revealed that (1) CB[6] molecules are disordered over two positions and (2) there are three independent CO₂ sorption sites, two in the 1D channels (A and B) and one in the CB[6] cavities (C) (Figure 3). The CO_2 molecules adsorbed on sorption site A near the wall of the 1D channels interact with 1 through hydrogen bonding (CH····O=C=O; 2.575 Å on average) (Figures 3b and S11). Sorption sites B located near the center of the channels along the c axis and disordered over three positions (occupancy, 0.33) are the secondary sorption sites (Figure 3c).¹² The CO₂ molecules occupying site **B** interact with those at site A mainly through quadrupole-quadrupole interaction in a T-shaped arrangement (O₂C···O₂C; 3.00 Å) (Figures S12).¹² From a static structural point of view, the molecular cavities of the CB[6] molecules in 1 are not accessible because both portals of a CB[6] molecule are blocked by neighboring CB[6] molecules. Surprisingly, however, two CO₂ molecules are included in the CB[6] cavity (site C; occupancy, 0.89), interacting not only with the carbonyl groups of CB[6] but also with each other in a slipped-parallel geometry (shortest distance; 3.21 and 3.20 Å, respectively) (Figures 3d and S13).¹³ This observation clearly indicated that 1 is in dynamic motion to open the portals in the presence of CO₂ gas even in the solid state. The amount of adsorbed CO₂ revealed by the X-ray structure of CO₂ adsorbed 1 (3.72 CO₂ per CB[6]) is slightly smaller than that from the sorption isotherm at 196 K (4.5 CO₂ per CB[6]), presumably owing to the slightly low occupancy at the sorption sites.

In summary, an organic molecular porous material based on CB[6] recrystallized from HCl conditions shows a high CO₂ sorption capacity at 298 K, 1 bar. Most interestingly, **1** showed the highest selectivity of CO₂ over CO among those of any known porous materials so far. The remarkable selectivity of CO₂ may be attributed to the high enthalpy of CO₂ adsorption. Single-crystal X-ray analysis revealed three CO₂ sorption sites including the molecular cavity of CB[6] and adsorbed CO₂ interacting with **1** through hydrogen bonding and/or dipole–quadrupole interactions, which may be responsible for the high enthalpy of CO₂ adsorption. The exceptionally selective CO₂ sorption properties of **1** may find useful applications in the pressure swing adsorption (PSA) process for CO₂ separation not only in the steel industry but also in other industries such as natural gas mining.

Acknowledgment. We gratefully acknowledge the CRI, BK21, and WCU (Project No. R31-2008-000-10059-0) Programs of MOEST and Steel Science Program of POSCO for support of this work. X-ray diffraction studies with synchrotron radiation were performed at the Pohang Accelerator Laboratory (Beamline 6B1, MXI) supported by MOEST and POSTECH.

Supporting Information Available: Experimental details for PXRD, gas sorption isotherm, IR, and enthalpy of adsorption. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_spm.pdf.
- (2) Duc, N. H.; Chauvý, F.; Herri, J.-M. Energy Convers. Manage. 2007, 48, 1313.
- (3) (a) Yong, Z.; Mata, V.; Rodrigues, A. E. Sep. Purif. Technol. 2002, 26, 195. (b) Johnson, J. Chem. Eng. News 2004, 92 (51, Dec 20), 36.
 (4) Xu, G.-W.; Zhang, C.-F.; Qin, S.-J.; Zhu, B.-C. Ind. Eng. Chem. Res. 1995,
- (4) Xu, G.-W.; Zhang, C.-F.; Qin, S.-J.; Zhu, B.-C. Ind. Eng. Chem. Res. 1995, 34, 874.
- (5) (a) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Science **2008**, 319, 939. (b) Wang, B.; Côté, A. P.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Nature **2008**, 453, 207. (c) Dybtsev, N.; Chun, H.; Yoon, S. H.; Kim, D.; Kim, K. J. Am. Chem. Soc. **2004**, 126, 32. (d) D'Alessandro, D. M.; Smit, B.; Long, J. R. Angew.

COMMUNICATIONS

Chem., Int. Ed. 2010, 49, 6058. (e) Yazaydin, A. Ö.; Snurr, R. Q.; Park, T.-H.; Koh, K.; Liu, J.; Levan, M. D.; Benin, A. I.; Jakubczak, P.; Lanuza, M.; Galloway, D. B.; Low, J. J.; Wills, R. R. J. Am. Chem. Soc. 2009, 131, 18198. (f) Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc. 2008, 130, 10870. (g) An, J.; Rosi, N. L. J. Am. Chem. Soc. 2010, 132, 5578. (h) Demessence, A.; D'Alessandro, D. M.; Foo, M. L.; Long, J. R. J. Am. Chem. Soc. 2009, 131, 8784. (i) Britt, D.; Furukawa, H.; Wang, B.; Glover, T. G.; Yaghi, O. M. Proc. Natl. Acad. Sci. USA 2009, 106, 20637. (j) Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 38, 1477. (l) Yoon, J. W.; Jhung, S. H.; Hwang, Y. K.; Humphrey, S. M.; Wood, P. T.; Chang, J.-S. Adv. Mater. 2007, 19, 1830. (m) Kim, H.; Chun, H.; Kim, K. In Metal-Organic Frameworks: Design and Application, MacGillivray, L. R., Ed.; Wiley: New Jersey, 2010; Chapter 7.

- Wiley: New Jersey, 2010; Chapter 7.
 (6) (a) Dalgarno, S. J.; Thallapally, P. K.; Barbour, L. J.; Atwood, J. L. Chem. Soc. Rev. 2007, 36, 236. (b) Tian, J.; Thallapally, P. K.; Dalgarno, S. J.; McGrail, P. B.; Atwood, J. L. Angew. Chem., Int. Ed. 2009, 48, 5492. (c) Sozzani, P.; Bracco, S.; Comotti, A.; Ferretti, L.; Simonutti, R. Angew. Chem., Int. Ed. 2005, 44, 1816. (d) Ananchenko, G. S.; Moudrakovski, I. L.; Coleman, A. W.; Ripmeester, J. A. Angew. Chem., Int. Ed. 2008, 47, 5616. (e) Tian, J.; Thallapally, P. K.; Dalgarno, S. J.; Atwood, J. L. J. Am. Chem. Soc. 2009, 131, 13216. (f) Comotti, A.; Bracco, S.; Distefano, G.; Sozzani, P. Chem., Int. Ed. 2009, 284. (g) Atwood, J. L.; Barbour, L. J.; Jerga, A. Angew. Chem., Int. Ed. 2009, 284. (g) Hawood, J. L.; Hoffmann, F.; Fröba, M. ChemPhysChem 2010, 11, 2220.
- (7) Reviews on cucurbit[n]uril: (a) Mock, W. L. In Comprehensive Supramolecular Chemistry, Vol. 2; Vögtle, F., Ed.; Pergamon: Oxford, 1996; p 477.

(b) Kim, K.; Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim, D.; Kim, J. *Chem. Soc. Rev.* **2007**, *36*, 267. (c) Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H.-J.; Kim, K. Acc. Chem. Res. **2003**, *36*, 621. (d) Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Angew. Chem., Int. Ed. **2005**, *44*, 4844.

- (8) Lim, S.; Kim, H.; Selvapalam, N.; Kim, K.-J.; Cho, S. J.; Seo, G.; Kim, K. Angew. Chem., Int. Ed. 2008, 47, 3352.
- (9) **1** soaked in 0.1 M HCl, MeOH, DMSO, and benzene and exposed to moisture in open air maintains its crystallinity at least for several days (Figure S3).
- (10) The CO₂ sorption capacity of 1 at 22 bar, RT is measured to be 14.8 wt % (3.36 mmol/g). See SI for details.
- (11) X-ray data for CB[6] 3.72CO₂: C_{39.72}H₃₆N₂₄O_{19.44}, M = 1160.61, trigonal, R3 (No. 148), a = 31.782(5) Å, c = 12.388(3) Å, V = 10836(3) Å³, Z = 9, T = 90 K, μ (synchrotron) = 0.147 mm⁻¹, $\rho_{calc} = 1.601$ g·cm⁻³, R_1 ($I > 2\sigma(I)$) = 0.0821, wR_2 (all data) = 0.2466 (all data), GOF = 1.094.
- (12) Note that the CO₂ molecules at site **B** are significantly bent with an OCO angle of 159(4)°, whereas those at sites **A** and **C** have an almost linear geometry (176.3(9)° and 179.1(8)°, respectively). Similar bending of CO₂ after adsorption in an MOF has been observed: Dietzel, P. D. C.; Johnsen, R. E.; Fjellvag, H.; Bordiga, S.; Groppo, E.; Chavan, S.; Blom, R. *Chem. Commun.* **2008**, 5125.
- (13) In solution, inclusion of CO₂ molecules in decamethylCB[5] was reported: Miyahara, Y.; Abe, K.; Inazu, T. Angew. Chem., Int. Ed. 2002, 41, 3020.

JA105211W